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Characterization of Stripline Crossng by Transverse Resonance Method

A method of analysis is described for characterizing the discontinuities made of

orthogonally crossed two striplines on a suspended structure. The method of analysis is

based on generalized transverse resonant technique extended here to 4-port configurations.

The technique is used for determination of resonant structure at a given frequency and

subsequently the equivalent circuit parameters of the discontinuities.
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1. INTRODUCTION OF THE PROBLEM

Stripline crossings of the multi-layer printed circuitboard are commonly used in

digital circuit design. As the signal frequency gets higher due to high speed processors,

an accurate wave analysis of the characteristics of the crossing becomes important. In

addition, the crossing of strips on both sides of the suspended substrate often appears in

microwave and millimeter wave integrated circuits [1]. To date little has been reported

on the exact analysis of such structures.

The problem presented here is to characterize the discontinuities of orthogonally

crossed two striplines. The structure to be analyzed is shown schematically in Fig.l-1

along with the coordinate system. Two striplines are crossed orthogonally on opposite

sides of the substrate. Auxiliary conducting planes are added to convert the structure to a

closed one. Depending on which ground plane (at z = -hl or z = c) is associated with

each strip, the structure may be regarded as consisting of either inverted or suspended

striplines.

Region (2)S Region (3)

c ,' iS hZ Region (1)
, ... ... ................. y=b .

z=O~~ ~ __ I : Stripline 1

S 2 : Stripline 2

-h1
x=a

Fig. 1-1 Structure for the problem
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It is assumed that each pair of opposing side walls does not influence

electromagnetic fields guided by the strip parallel to the walls but only the field guided

p1 along the orthogonal directions. This assumption is valid as long as the field remains

confined in the proximity of the two striplines. Thus, surface wave and radiation

phenomena are excluded. For the sake of generality, two different dielectric layers with

dielectric constant eI and e2 are assumed in the region (1) and (2), respectively. The
J,

auxiliary walls are used for field analysis purpose. They permit the structure to be

analyzed as a rectangular waveguide discontinuity problem.

The method for analysis is based on a generalized "transverse resonance technique"

introduced for finline step discontinuity problem [2]. The technique is extended here to a

4-port configuration treated in this report. The method consists of two parts. First, the

resonant structure created by auxiliary walls is described in terms of network

representation containing a reactive 4-port. For a fixed resonant frequency, we try to

find as many resonator sizes as required for extraction of 4-port matrix elements. The

second part of analysis is a full-wave electromagmetic field analysis in which the resonant

frequency is found as an eigenvalue problem. A unique feature of this second part of the

analysis is to view the problem as the waveguide scattering for the waves traveling in the

direction normal to the subatrate surface.

o%%

°%'

.d.
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2. CIRCUIT REPRESENTATION

2-1. Resonance Method

reference planes

discontinuity

Fig. 2-1 Microstrip line with some discontinuities

In this section, the resonance method applied to 2-port network [31 is briefly

described. Suppose we have a transmission line with some discontinuities as shown in

Fig. 2-1. With appropriate reference planes for the input - output ports, the

'-, discontinuities can be represented as a 2-port network matrix form:ril ii l 1Z1
= [z] 11 [2q =Z Z (2-1])

V2 12 ,Z21 Z22

where Z1 1, Z12, Z21, Z22 are unkown parameters. In the assumption of lossless and

recinrocal network, we have only three real unknowns in the matrix. If the two ports are

reactively terminated, the entire circuit becomes a resonator. This is shown in Fig. 2-2

where Zoi (i = 1,2 ) is characteristic impedance, i is the propagation constant and 1i is the

length of the i th transmission line. In Fig. 2-2, the resonance condition is expressed as

(Zil +ZI )(Z22+Z2)-Z12 2 = 0 (2-2)

.4.

'
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reference plane

[~~ =jl z] tan zo

i =1,2

Fig. 2-2 Entire circuit as a resonator for a 2-port network

If the same resonant frequency is obtained with three different pairs of Z1 and Z2, Eq.

(2-2) yields three different equations and the Z parameters can be solved. The reference

plane can be placed at any position as long as it is on the continuous part of the

transmission line and the field disturbance due to the discontinuities remains the same.

The equivalent circuit of a 2-port network can be commonly expressed as shown in

Fig. 2-3.

I1 Z l-Z12 Z22-Z12 12

VI Z12T V2

0 0

Fig. 2-3 Equivalent circuit of a 2-port network

Since the value of Z12 is solved with its square value in Eq. (2-2), the sign of the

value must be chosen so that the equivalent circuit has physically proper frequency

performance in the regarding frequency region. If the reference planes are placed close

to the discontinuities, where the fields are much influenced by them, negative capacitors or

inductors may appear in an equivalent circuit representation.

." ,,° 1' 1~~~~~~~. ". .... " .. . . . . . . . ... . .. _..... ., - .-. #-,.,../ ,-



2-2. 4-Port Network

In this section, a procedure for a 2-port resonance method is extended to a 4-port
configuration. The crossing between the two suspended striplines can be represented as

a 4-port network at some reference planes sufficiently far from the discontinuity region.

Each port is terminated with a reactance corresponding to the line section between the

reference plane and the auxiliary wall as shown in Fig. 2-4.

-..' I

14 Zi = j Zoi tan3il/

Fig. 2-4 4-port network for the problem

The network equations for the entire circuit is expressed in matrix form as

[V]=[Z] [I] (2-3a)

[V =-diag [ Zi][ I] (2-3b)

'.' thus [[Z ] + diag[ Zi ][I= 0 (2-3c)

where Zi (i = 1,2,3,4) are the terminal impedance: Zi=j Zoi tan IBili. The entire

structure is assumed to be lossless so that the Z parameters of the 4-port network are

imaginary and the resonant frequency is real. The resonant frequency is obtained from

the condition that the voltages and currents are non-trivial in the absence of sources. From

Eq. (2-3c), this condition is

det 11 [ Z ] + diag [ Zi ] II = 0 (2-4)

The values of ZI's can be specified once the distance to the wall is fixed while the Z

, , parameters are to be determined. The impedance matrix of a reciprocal 4-port lossless

,9f
.,. ", .". -" :.". ."," 4.. - .'.-" ", . : .". ."z ,"% " . "'' , .''-"'... - -:.'''.... ''. '' ''' ', . .,..,
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network possesses in general 10 independent imaginary parameters. In the present case,

however, because of the symmetry of the structure, only five parmeters are needed to

characterize the Z matrix:

VI Z11Z12Z13Z13 I1

V2 Z12 Zl I Z13 Z13 12
(2-5)

V3 Z13 Z13 Z33 Z34 13

.V4 Z13Z13Z34Z33 .14

From Eq. (2-5), the resonant condition of Eq. (2-4) can be written in the following form:

(Zll1+Zl)(Zll1+Z2)-Z12 2 ) (Z33+Z3)(Z33+Z4)-Z34 2 )

-4 Z132( Zl I-ZI2+(ZI+Z2)/2 }Z33-Z34+(Z3+Z4)/2 } = 0 (2-6)

The derivation of the equation is detailed in Appendix A. It is observed that, in the limit
as Z13 equals zero, Eq. (2-6) reduces to

(Z11+Z1)(Z11 +Z2)-Z122 =0 or (2-7a)
(Z33+Z3)(Z33+Z4)-Z34 2 =0 (2-7b)

As expected, when the two striplines are uncoupled, the resonant condition splits

into those of the individual lines. The unknown Z parameters as well as terminal

impedances Zi's are frequency dependent. Eq. (2-6) can be regarded as a function of co

equated to zero. The Z parameters in Eq. (2-6) may be solved if the five different
equations are derived corresponding to five different set of Zi's at tie same resonant

frequency.

Now we can show that by properly choosing the terminal impedance Zi's, the

resonant conditions are simplified so that the problem is solved analytically. First, let us

choose the terminal impedances in a symmetrical way, i.e., 11=12 and /3=14 so that

ZI = 72 (2-8a)
Z3 = Z4 (2-8b)

The above conditions correspond to the side walls located symmetrically with respect to the

discontinuities. If Eqs. (2-8) are applied, Eq. (2-6) can be factorized in the form

4I
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(Zi1+Z1-Z12) (Z33+Z3-Z34) ((Zi1+ZI2+Z1)(Z33+Z34+Z3)-4 ZI3 2 ) 0. (2-9a)

Thus Z11 + ZI -ZI2 = 0 or (2-9b)
Z33 + Z3 -Z34 = 0 or (2-9c)

(Z11+Z12+Z1)(Z33+Z34+Z3)-4ZI3 2 =0 (2-9d)

With each factor in Eq. (2-9a) equated to zero, the eigenvalues for the matrix in Eq. (2-3c)

are obtained ; each eigenvalue co is then the resonant frequency under the condition of the

corresponding eigenvector of the currents. When the first factor in Eq. (2-9a) is equated ,r

to zero, i.e. Eq.(2-9b) is satisfied, the eigenvector of Eq. (2-4) is easily found as detailed

in Appendix B:

I I = -12 (2-10a)

13 = 14 = 0 (2-10b)

This condition corresponds to an odd resonance of the structure shown in Fig. 2-5(a).

The structure behaves as if an electric wall is placed symmetrically along at the center of

stripline 2. For the given resonant frequency, the required resonance condition provides

the quantity Zll-Zl2 for a given value of Z1. 13=14=0(therefore V3 =V4=Ounless

Zi is infinite ) does not imply that the electromagnetic field is zero along the strip 2, but

only that the electromagnetic field of the dominant mode is zero; it is anticipated that the

field is localized at the crossing region along the strip 2 as illustrated in Fig. 2-6(b).

- Zll-Z12 ZII-Z12 11 1 Z33-Z34 Z33-Z34 13

ZI Z12fi'Z34 Z

11 -- 13

ZI VIZ l -ZI2 D 33 3-Z 34

(a) stripline I (b) stripline 2

Fig. 2-5 Equivalent circuits for an odd resonance

.. ,
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E-Wall) Current M-WallI2
x ' - Stripline Zy y

I -2y =0O y=b

(a) Cross sectional view (b) Side view

Fig. 2-6 Longitudinal current flow on stripline 2 with E-wall

Similary, when Eq. (2-9c) is satisfied, an odd resonance of stripline 2 is obtained

11 = 12 = 0 (2-11a)

13 =-14 (2-1lb)

The resonant circuit is expressed in Fig. 2-5(b). It is interesting to note that the

individual parameters of the pairs of ports 1-2 and 3-4 are uncoupled in the odd resonance

modes. Finally, from Eq. (2-9d), the eigenvector for an even resonance is obtained:

I1 = 12 (2-12a)

13 = 14 (2-12b)

Substitution of this condition into Eq. (2-5) yields the 2-port network matrix equation

VI [l+Z12 2 Z13 1I2i31= [uJ(2-13)
V3 2 Z13 z33+Z34 13

whose equivalent circuit is illustrated in Fig. 2-7 together with terminal impedances.

I.1 Zll'-Z12' Z22'-Z12' 1Q

3 Zll'= Z1l +Z12
Z12' = 2 Z13

Zi Z3 Z22'= Z33 + Z34

Fig. 2-7 Equivalent circuit for an even resonance

- .'x'', ,x . ,"'' .,.'''-.¢-.. 'o . - , ' ', - . ' L - . -"" ,hV """, -,: " , "--. .'-;,"";...-", '3'- --- : ' '"...: K.-



From the condition of Eqs. (2-12), it is postulated that the even resonance structure has

two magnetic walls at each center of the striplines. The use of symmetry, therefore, has

reduced the 4-port network problem to that of a 2-port. For a given resonant frequency,

three different pairs of Z1 and Z3 ( with ZI = Z2 and Z3 = Z4 ) are used to compute three

quantities Zi1 ,Z12' and Z22' which denote the elements of the matrix in Eq. (2-13):

Z1 l = ZI1 + Z12 (2-14a)

Z22'= Z33 + Z34 (2-14b)

Z12'= 2 Z13 (2-14c)

Combining the results with those for the two structures in Fig. 2-5, we obtain all five Z

parameters. For the procedure illustrated above, we must know the propagation

constants of the two isolated striplines, i. e., 131 and 33. The quantities are necessary to

obtain ZI and Z3:

zI =j tan 81(a -w2)/2 (2-15a)

z3 =j tan B3( b -wl )/2 (2-15b)

where the impedances are normalized. These expressions are obtained for a specific

choice of the reference planes as shown in Fig. 2-8. The field analysis can be also used

to determine Bl and 13. This can be done simply by setting 131 = r/a and 133= x/b at a

specified resonant frequency for the isolated stripline.

reference planes

b I -r 3

iI  wiIS L
.. w2 a-w

S 2

~Fig. 2-8 A choice of reference planes (top view)

"- 4"
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2-3. Equivalent Circuit

It is important to find an equivalent circuit representation of the 4-port structure so

that it is most convenient for the present analysis. Intuitive insights are needed to figure

out a good expression which well represents a structure in a broad frequency range. A

basic idea for choosing proper elements is to use the knowlege of field distributions. If

the E field originating from a stripline increases in the proximity of discontinuities, it may

be represented by a parallel capacitive element. When the H field circling around a

stripline changes, it may be represented by a series inductive element.

1 3c

Fig. 2-9 Equivalent circuit for the problem

For the structure in Fig. 1-1, one possible equivalent circuit representation could be

chosen as shown in Fig. 2-9. The circuit already takes the symmetry properties into

account. Zc is used to represent the coupling capacitance between the two strips.

Zp+Zp and Zq+Zq represent the inductances associated with the two stripline sections,

while Za and Zb represent the two strip-to-ground capacitances. The Z matrix for the

circuit in Fig. 2-9 is given as

V1 Zll Z12 Z13 Z13 I1

V2 Z12Zll Z13 Z13 12
(2-16a)

V3 Z13 Z13 Z33 Z34 13

V4 Z13 Z13Z34Z33 14 4

where

-I4 t V, ,%, 4 % C "' - .% , .% . d .. , .. .. . % ". .. -. .,- %"



ZI I=Zp+Za(Zb+Zc)/(Za+Zb+Zc) (2-16b)
Z12 =Za (Zb +Zc)/(Za +Zb +Zc) (2-16c)
Z13 =Za Zb/(Za +Zb +Zc) (2-16d)
Z33 =Zq +Zb (Zc +Za)/(Za +Zb +Zc) (2-16e)

Z34 = Zb (Zc +Za)/(Za +Zb +Zc) (2-16f)
From Eqs. (2-16), each element in the equivalent circuit is obtained:

Za = MZ3 2 -Z12 Z34)/(Z13 -Z34) (2-17a)

Zb = (Z13 2 - Z12 Z34 )/( Zl3 - Z12) (2-17b)

Zc = -(Z13 2 -Z12 Z34)/Z13 (2-17c)
Zp=Z11 -Z12 (2-17d)
Zq = Z33 - Z34 (2- 17e)

The derivation of Eqs. (2-16) and (2-17) are detailed in Appendix C. As computation for

the Z parameters, accordingly the parameters in Eqs. (2-17), it is convenient to use

normalized impedance parameters with respect to the characteristic impedance of each

stripline. Thus, the matrix in Eq. (2-5) may be modified as follows:

V1 zlI z12 z13 z13 ii

v2 z12 zI z13 z13 i2

,v3 z13 M1 z33 z34 
Bi2-8a

v4 zl3 M1 z34 z33. i4

where

[v: normalized voltage vector

[i: normalized current vector

zmn =(2-18d)

Z;m- -\T-on m =1, 2, 3,4
n = 1, 2,3,4

Zoi: Stripline characteristic impedance at the i-th port

The normalized terminal impedance zi's are given by Eqs. (2-15). Small letters z. v, 1

for Z, V, I denote notrm:alized quantities. Accordingly, the equations in Eqs. (2-8), (2-9)

and (2-13) are replaced by normalized ones, - replacing Zs by z's - , and solved with
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respect to normalized parameters. Finally, equivalent circuit parameters in Eq. (2-17) are

solved using the relation of Eq. (2-18d).

The S matrix for a 4-port network is obtained form the relation

[S]=[ [z] +[U lP[[zI- [U]] (2-19)

where [ z] is a normalized impedance matrix and [U ] is a unit matrix. The matrix

relations are detailed in Appendix D.

U

-,a,

4.

.%

V -:. . ..., - .. . .. , , .. ...-. ... . . . ., ..-. .......--.-- ... . . ::
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3. FIELD ANALYSIS

3-1. Modes in a Rectangular Waveguide

y S cross sectional area -.

b E or M wall
. . ... ............. ............. . ,

0 a x

Fig.3-1 Rectangular waveguide

Fig. 3-1 shows a rectangular waveguide structure with the reference coordinate.

With the scalar potentials, the general field expressions for TE to z and TM to z modes are .

as follows [41: -.

TE TM

Et--VtV xz HtVt x z

Ht= -Vt V Et= Vt (P (3-1)
ZA yA

kc2  kc2

Hz=-1 Ez= (
zA yA

where kc2 =(_a'M)2 + (-u&)2

a b
m, n: see Eqs. (3-2)

132 = k2 kc2

yAjcoe, z^=jp., k 2 -yA=(z 2p.

e : permitivity i : permeability

E t=xEx +y Ey

H t = x Hx + y Hy

Vt=x + y-1 x, y, z : unit vector in x, y, z direction
v x y
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where z dependance ejBz is assumed and subscript t denotes the transverse components of

a quantity. Assuming an electric wall or a magnetic wall at each center of the wave

guide, one can express scalar potentials including conductive guide boundary conditions as

follows:

Vmn=Pmncos ( malx)cos( ) mn =0,1,2,3,-- (3-2a) U
a b

'Pmn = Pmn sin ( 115 ) sin( b'X ) m,n = 1,2,3, -- (3-2b)
a b

ab kc 2 i*O

where subscripts mn corresponds to the order of a harmonics, and Pmn is a coefficient to

normalize the norm of scalar potential vector functions so as

J I Vt Vmn 12 dxdy = 1 (3-3a)
S

I Vt Vmn 12 dxdy = 1. (3-3b)
S

Even symmetry solutions with respect to the x or y axis are obtained for m or n being an

odd integer. Similarly, odd solutions are obtained for m or n being an even integer.

3-2. Field Expansions inside the Cavity

Y -hi Y S2
b b

S1;; a a
0 x ax t x

z z c=t+h2
, z

(a) Region (1) -hl5z_<0 (b) Region (3) 0zt (c) Region (2) L zc I
Fig. 3-2 Subregions for field analysis

'V -. ..
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V.

The resonant structure of Fig. I1-I can be subdivided into three homogeneous

regions as shown in Fig. 3-2. In each region, we can expand the electromagnetic field in

terms of TE-to-z and TM- to-z waveguide modes. Incorporating the boundary conditions

for z=-hlI and z=c, the following expressions can be assumed:

region (1): -hl :5z!5O

MN
Et(')=X Amn~1 )Vt 'Vin x z + Binn(l)(JOin(l)/yAl) Vt Pmn sin Omin(l)(z+hl) (3-4a)

mn
MN

Ht 1) [ An(l)(Omin(l)/zA 1) Vt 'Vin + Bin~1 Vt (Pmn x z] cos 5inn(l)(z+hl1) (3-4b)
-:n

~ ~l) (k1
2 

-kc
2 )1/2(4)

Om~) k 3-c

region (2): t:5z:5c

MN
* ~~Et( 2)-= Ainn(2)Vt Vnn x z + BMn(2)(P~nn(2)/yA) Vt t in snInn(2)(z-c) (3-5a)

Mn
MN

Ht2=Y [ AMn(2)(P3nn(2)/zA2) Vt 'Vmn + Bmn( 2) Vt Vmtt x z] cos, 5mn(2)(z-c) (3-5b)
in

4.... (2)= ( k 2 _ kc2 )112 (3-5c)

region (3): 0O5z <t

MN
Xt3=- [ ( Cin sin Omin(3)Z + Drnn sin prmn(3)(Z-t) ) Vt V1 Mn X Z

+ ( Finn sin JOmn( 3)Z + Ginn sin JPrnn(3)(z-t) ) (p3Mn( 2)/YA3 ) Vt pn (3-6a)

MN3= ,[(Cinn cos Pmin(3)z+Dinn cos Omin(3)(z-t) ) (Omin( 3 )/zA3 ) Vt Vmn
run

+ ( Finn cos; Jmn(3)Z + Ginn cos Omzn( 3)(z-t) ) Vt (Pmn x zi (3-6b)

- Jmn(3)= ( k3
2 - kc2 )1/2 (3-6c)

where Ain~'), Ain( 2 ), Bmn 1 ), Bin( 2 ), Cmn, Dmn, Finn, and Gmn are unknown

coefficients, and superscripts in parentheses refer to respective regions. The boundary

conditions at each interface are
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Interface (I): atz

Et, = Et3  on S (3-7a)

Et1 = Et 3 = 0 on S1 (3-7b)
. : Ht- Ht, = [ AHt(P on SI1,

0 on S-S1 (3-7c)

Interface (1) :at z =t

v. Et2 = Et 3  on S (3-8a)

Et2  Et 3 =0 on S2 (3-8b)

Ht2 - Ht 3 = [ AHt(2 ) on S2

0 on S-S2 (3-8c)

where AHtO0 ( i = 1,2) are unknown functions of x, y. These functions are expanded in

terms of a set of known orthogonal vector functions v) defined over Si with unkown

coefficients pvO (see next section):

AHt ( ') = 7. P1v) Xv(I) (3-9a)
V

AHt (2) =- I pV(2) XV(2) (3-9b)
V

Applying the boundary conditions of Eqs. (3-7), (3-8) to Eqs. (3-4), (3-5), (3-6)

and making use of the orthogonal properties of VtVmn and VtPmn, we obtain a

homogeneous system of equations in terms of unknown coefficient Pv:

Mp(I) URvO 1) + V2MpV(2) UgiV( 12) = 0 g = 1, 2, 3, vlM (3-10a)

v M v M =L ~v
pV(I) UlV(21)+ U2Mp v(2) UtV(22)= O g = 1, 2, 3, V2M (3-lOb)

where

MN
Ui v(iv ) = I S, amnij) 4mnjl() ,v( ) - (130/yA) bmn(ij) Omn,gW Omn,v(U)) (3-1 Oc)

mn
,j= 1,2

5i t
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.mn,O() = .[ I(O. VtVmn ds i= 1,2 (3-lOd)
(Si

0mn,( = I Xpo Vt(Pmn x z ds i= 1, 2 (3-10e)
Si

ann(1l) = Ka ( 1/S1 ) (B(2)Ct2 + 13(3)Ct3 ) (3-100

amn(2) = Ka (1/ (SIS3)) 8(3)  (3-10g)

amn(21) = - Ka (1/ (S2 S3) ) B(3)  (3- 10h)

an (22) = - Ka ( 1/S 2 ) ( 8')Ct1 + 8(3)Ct3 ) (3-10i)

Ka = ẑ  / (8(3) 2 -B(3)Ct 3 (B(2)Ct2 +B(1)Ctl)-(1)B(2)CtlCt2 }

brn( 11) = Kb ( I/S 1 ) (B(3)Ct2 +(e3/, 2 )B(2)Ct3 ) (3-10j)

bmn(12) = Kb (1/ (S1S3 ) ) (3/E 2 ) 8(2) (3-10k)

bmn(21) = - Kb (1/ (S2 S3 ) ) (C3/e 1 ) B(1)  (3-101)

bmn(22) = - Kb (1/S 2 ) (B(3)Ctl+(e3/e 1 )B81)Ct3 ) (3-10m)

Kb 1 3(3)/ (63/c1)(F-/62 0 )8(2)-B(3)C t3  (E3/ I 1)B)Ct2+(e362)B(2)Ct1 -B()2 Ct 1Ct2 ]

60i) = Bmn(i)  i = 1, 2,3

C1 , C2 , C3 = cos 3(1hl, cos B(2)h2, cos(3h

S 1, $2, S3 - sin 8)h1, sin 8(2)h2, sin B()t

Ctl, Ct2 , Ct3 = CI/S I , C2/S2 , C3/S3

ZA = j 0 go go • free space permeability = 47tx10-7[H/m]

The derivations of Eqs. (3-10) are detailed in Appendix E. The condition for non-trivial

solution determines the characteristic equation of the given structure. This equation may

be regarded as a function of (o, 11, 13 equated to zero:

f(co, 11,13 )=0 (3-11)

For given value of o = or, Eq. (3-11) can be solved to evaluate the different pairs of 11

and 13 giving rise to the same resonant frequency wor- These values of 11 and 13 can be

used for computing the discontinuity parameters discussed in the previous section.

,,,
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3-3. H Field ( Current) Expansion on the Strips

The H field on the strip are expanded in terms of known basis functons Xv with

unknown coefficients Pv. Actually what will be expanded is the H field discontinuity

which is equal to Jt x z, viz.
V. vmax

AHt=YPvXv =Jtxz (3-12)
V

The basis functions are chosen in such a way that the field is non-zero only on the strip.

Additional boundary condition must be satisfied at the strip ends where the striplines are

terminated with electric walls. The field may be expanded in terms of the basis functions

of two different types. One of them is harmonic basis functions and another is singular

basis functions. The singular behavior of the magnetic field component normal to the

stripline edges is incorporated in the singular basis functions. They are therefore

expected to provide a faster numerical convergence. For the H field expansion on S 1

[see Fig. 3-3(a)], the following set is employed:

Xx,rs( = sin __.x sin[_s (b-wl) Iy (3-13a)
a wl 2

Cos[ SR {y_ Y (b-wl)
rx wl 2Xy,rs(') = cos a (3-13b)

i. wli2

b S
VY, ' : ... .. ............. .4r-..

0 a x 0 a x
-42

(a) at interface (I) (b) at interface (II)

Fig. 3-3 Striplines at each interface

- ' -- ,
JA t.e& 6
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where subscript rs is used instead of v for representing the variations in the two orthogonal

directions (see Appendix F). Similarly, for the H field on S2 in Fig. 3-3(b), the

expansions are

•Cos[ "I ix_ (a-w2)

XxrS(2 )-a/2) 2 cos (3-14a)
1 b

w2/2

Xy,rs(2) sin[M x- (a-w2) sin y (3-14b)
w2 2 b

Depending on whether an electric or magnetic wall is assumed to be at (A) and (B) in Fig.

3-3(a), the numbers r and s in Eqs. (3-13) are classified to be odd or even as illustrated in

Table 3-1.

Table 3-1 rs-table with respect to E M walls

(a) at interface (I) (b) at interface (HI)

r s r S

M well 2r'+1 2s' M wall 2r" 2s'+ I

E wall 2r' 2s' +1 E wall 2r'+I 2s'

(1) 1 , 3 ,5, -- (2) 1,3,5,--
Xx : r, s or x:rs or

2, 4,6, -- 0, 2,4,--

(I) (2, 3, 5-X" r,s= (2)1,1 --Sr Xy r, s '
'] -or

2, 2,,4,--0V24,- 2,4,6,-

%

i iv

.. -, ." . ."." '.".".","- .. . "-. . - . . - .". .U . ",,.- -" .. . -",4 U " . """. -'" "' . .* """"""" ,, ,..;
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4. COMPUTED RESULTS

In accordance with the technique described above, the electromagnetic fields in each

region are expressed in termes of the series expansions. In the numerical computation,

only a finite number of terms can be retained in the series expansions. In order to obtain

a proper convergent behavior of the solution, the number of the terms was chosen in such

a way that the highest spatial frequencies of the electromagnetic field are approximately the

same in the transverse directions (x,y). The current on a stripline is expanded in such a

way that the distributions of each component (Jx, Jy) in the transverse direction are

expressed by only the first term and that the distributions in the longitudinal direction by a

set of terms, the number of which are the same on each stripline.

The method is first tested by computing the resonant frequency of the isolated

stripline with certain structural parameters. Fig. 4-1 shows the convergence of the

resonant frequency with respect to the number of the terms of the field expasions in the

homogeneous region of Fig. 3-2. The number MN was chosen to be the same in both x

and y directions. The results exhibit very good agreement with those by the SDA [5] in

which the resonant frequency was calculated from the equation

fo = _c_ ._0- (4-1)
a 8

where c :speed of the light

a stripline length

8 propagtion constant in proximity of fo

1so: 0 in free space

because computationaly the field was represented by the same number of harmonics in

both this method and SDA.

Fig. 4-2 shows the convergence of the resonant frequency of crossing stripline

structure with respect to the number v of the current expansion terms in the longitudinal

direction. At beginning, we expected that the number of the terms would be required as

44 

4*
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.1* 1010-

~1000-

990-

•980 This method

970- x SDA

960- a= 120 mm
9b= 100mm

940-
0 160 260 300 460 500 60

Number of Terms MN

2020-

2000- -x - X X

0 1980-

1960-

1940-

1920- a =60 mm
0 b=50mmim1900-

1880- 1 ) 2 I 3b0

Number of Terms MN

hlfh2=5mm, t=lmm, wl=w2flmm, er=3.8

,,

Fig. 4-1 Convergence of the resonant frequency of an isolated stripline with respect to

the number of terms for electromagnetic field in the x and y directions

%% % ~
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2150-
a=30mm
b =52mm

210 0MN= 100
p.,2100-

2050-
0

2000

I I I

0 5 10 ?5 20

Number of Basis Functions V

hl =h2=5mnm, t=lmm
wl=w2=lmm, er=3.8

Fig. 4-2 Convergence of the resonant frequency of crossing striplines

with respect to the number of basis functions

-

%%%'%
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large as that of the electromagnetic field so that the longitudinal current would have the

same highest spatial frequency and the results would have a good convergence. From

Fig. 4-2, however, we could observe a fast convergence characteristic with a relatively

small number of current expansions if the electromagnetic field is well expressed by an

adequate number of harmonics.

Fig. 4-3 shows the parameters of the structure to be computed. The substrate

was placed symmetrically between the top and bottom planes with both strips having the

same widths. Hence, the impedance matrix representation of the discontinuities has

zi 1=z33 and z12=z34, i.e. unknown parameters number is three: z 1,z12, z13. The

computation was done at the three different frequencies: 0.5, 1, 2GHz. The approximate

lengths of striplines, namely the size of cavity at each frequency, are also illustrated in Fig.

4-3. The reference planes are defined in the same mannar as illustrated in Fig. 2-8.

Table 4-1 shows the element values for the equivalent circuit of the discontinuities

shown in Fig. 4-4. Fig. 4-5 shows the corresponding S parameters of the

discontinuities. Note that the elements for Za and Zb (=Za) are capacitors with negative

value. This is acceptable because they compensate the parallel distributed capacitance for

the isolated stripline with the absence of the other stripline as follows. Assuming the

absence of stripline 2 by making the port 3 and 4 open, the structure is nearly an isolated
4,.

stripline. The section between portl and 2, therefore, would have an equivalent parallel

capacitor which is coresponding to the distributed capacitor of the stripline. When the

section is very short, the capacitance of the equivalent capacitor may be negative so that it

would compensate the fringing capacitance due to the open ends at port 3 and 4 whose

value could be larger than that of the distributed capacitor as a simple stripline section.

Zc was also calculated with hl=10mm, h2=100mm, t=5mm, wl=w2--0.4mm,

Er=lat 2 GHz simulating the crossing model of the work by Giri, et al [6]. The result for

the value of Cc was 0.082pF, while the value of the coupling capacitor Cm was estimated

to be 0.1 5pF by using the equivalent radius.

A. -.
L A -L 

, 
L
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ar 3.84

7 b

~ a

.5' Unit [mm]

a = 230 - 240

b -200 -210 @ 0.5 GHz

a - 100 - 120

b -90-l100 @ 1GHz

a- 30-40

b 50 -52 @ 2GHz

Fig. 4-3 Structural parameters for computation
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port 1 OZ3

Fig. 4-4 Equivalent circuit of the discontinuities

Table 4-1 Values of elements

.10.5 GHz 1 GHz 2 GHz

LP=Lq 0.331nH 0.331nH 0.329nH

Ca-Cb -0.0885pF -0. 1 3pF -0.10 lpF

cc 0.249pF 0.272pF 0.258pF

MNt~ 400 200 100

V 1 20 20 1 20

Lp=Lq= ZQ.ZP

cc = Ij ca)Zo Za

j0) Zo Zc
Zp, Zq, Za, Zb, Zc :Normalized impedance

Zo: Stripline characteristic impedance(1592, 59., 15.30at .5, , 2G~I
%I
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: 
j 1.0

S13

2GHz

-1.0 
1

-010 
0.51.

0.5 S12 2GHz

2GHz

S" i -jo.1 -jl.0
(on xlO scale)

Fig. 4-5 S parameters of the discontinuities of the structure

.J.

.... ,.,...-.... . .. ..... ,. ,... 

- . .

ft~ S~?~s? ~-4~.:x? c .. -
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Longitudinal Currents (Jy on Stripline 1)

1.0 a= 30 mm
MN = 100

V =20
@ 2 GHz

1.0

1.0 a 107.9 mm

MN = 200

V =20

S@ 1 GHz~0

-1.0""

1.0- a - 232.1 mm
MN = 400

V =20
@ 0.5 GHz

0-

-1.0- -
Relative Longitudinal Distance

Fig. 4-6 Current distribution on the stripline

(a) longitudinal current

, %
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Transverse Currents ( Jx on Stripline 1)

a =30mm
N .0- MN = 100

V =20

• @ 2 GHz

0-

a 107.9 mm1.01 MN =200

I V =20
O!@ 1GHz

a =232.1 mm.0- N MN = 400

V = 20
' @0.5 GHz

0

Relative Longitudinal Distance

Fig. 4-6 Current distribution on the stripline

(b) transverse current

..- ... .,. .,. .°..., ., ....., ,., .-. - ...,;. -... , -. ... .-. .. . .-., .,-, ,-,,'% .-.,,- -,- .. - -....-..-..-... ..,. .,..-... . . ,-.'.4
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0.5- w=1.5 mm

-0.2 w=1.mm 0.4-
1.0

-01.0 0.3- -

0.5.2 0.5

0.1-

0 l 1 1 0 ,
0 0.5 1.0 1.5 0 0.5 1.0 1.

t [mm] t [mm]

(a) Ca (b) Lp

0.5-

r-.-- 0.4 -.
0.4- 

w=1.5 mm

"0.3-

1.0

0.2- 0.5

0.1-

0-
0 0.5 1.0 1.5

-: t [mm]

(c) Cc

.A

Fig. 4-7 Element values vs stripline width and substrate thickness
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Fig. 4-6(a),(b) show the longitudinal and transverse components of the current

densities at the center of the strip at the three different frequencies. In Fig. 4-6(a), it is

observed that each figure was of perturbated cosine form and had larger absolute amplitude

than cosine in the proximity of the center. This feature is anticipated from the insight that

the stripline whose length is slightly shorter than a half wavelength turn out to be a

resonator with capacitive loading at the center of the stripline. The longitudinal current,

hence, may be represented by the combination of a cosine and an additional polynomial

- functions [7] so that the computation time could be reduced. As to the transverse current

. shown in Fig. 4-6(b), the figures were not readily characterized. This implies that the
4

current function would require a number of terms of basis functions; the current function

could not be easily replaced by few terms of special functions.

Fig. 4-7(a)(b)(c) show the computed results for different values of the stripline

width and the substrate thickness.

5. CONCLUSIONS

A method of analysis has been described for characterizing the discontinuities of

two crossed striplines. The method is based on a generalized transverse resonance

*; technique for computing the resonant frequency of a resonator created by enclosing the

crossing with auxiliary perfectly conducting walls. This resonator problem is analyzed as

the waveguide scattering for waves traveling in the direction normal to the substrate

surface. For a specified frequency, resonant structures are found by adjusting the

lengths of the strips and hence the resonator size. These structures are used for deriving

the equivalent circuit parameters characterizing the discontinuity.

This method can also be applied for the characterization of stripline-slotline

transition.

A P|

"- . , % , , . .A > . '. .-. . I ' . . . . .. ... _ S .. . .........
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APPENDIX

A. DERIVATIO1N OF EQ. (2-6)

det U11 [Z] + diag I Zi] 11

= Zll+Zl Z12 Z13 Z13 Subtract row 2from row I

Z12 ZI1+Z2 Z13 Z13 Subtract row 3from row 4

Z13 Z13 Z33+Z3 Z34

Z13 Z13 Z34 Z33+Z4

= Z11+Z1-Z12 Z12-Z11-Z2 0 0 Subtract column 2

Z12 ZI1*+Z2 Z13 Z13frmclnI
Subtract column 3

Z13 Z13 Z33+Z3 Z34 from column 4

0 0 Z34-Z33-Z3 Z33.iZ4-Z34

= 2Z11-2Z12,Z14-Z2 Z12-ZII-Z2 0 0

Zl2-Z11-Z2 Z1I+Z2 Z13 0

0 Z13 Z33+Z3 Z34-Z33-Z3

o. 0 Z34-Z33-Z3 2Z33-2Z34+Z3+Z4

= (2Z1 1-2Z12+Z+Z2) (Z11I+Z2) -(Z12-Z1 1-Z2) 2 )

x { 2Z33-2Z34+Z3+Z4) Z33+Z3 ) Z34-Z33-Z3 )2)

-4Z132{(Z1-Z2+(Z1+Z2)/2) Z33-Z34+(Z3-iZ4)/2)

=((Zi 1+Z1)(Z1 1+Z2)-Z122) (Z33+Z3)(Z33+Z4)-Z34 2)

-4 Z132 ( Z11I-Z12+(ZI+Z2)/2) Z33-Z34+(Z3+Z4)/2)

where the following matrix relation is used:FallIa12 0 02
a21 a22 c 0 I (A) (B) - cal1Ib22
o c bllIb12
o o b21 b224
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where

(A)= all a12 (1 B)= f bll b12 1
La21 a22 J.b21 b22J

B. EIGENVECTOR FOR AN ODD OR EVEN RESONANCE

Insert the odd resonance condition
Zll -Z12 + Z1 0 (B-1)

into Eq. (2-3) to obtain

Z12 (I1 + 12) + Z13 (13 + 4) =0 (B-2a)

Z12(I1 +12)+ZI3(13+14) =0 (B-2b)

Z13 (I1 + 12) + (Z33 + Z3 ) 13 + Z3414 = 0 (B-2c)

Z13 (I1 + 12) + Z3413 + (Z33 + Z3 )14 = 0 (B-2d)

Subtracting Eq. (B-2d) from Eq. (B-2c), we obtain

(Z33 + Z3 -Z34) 13 - (Z33 + Z3 - Z34) 14 =0

or 13 = 14 (B-3)

Substitution of Eq. (B-3) into Eqs. (B-2) yields

[ Z12 2Z13 1 [11+12 =0

2Z13 Z33+Z34+Z3 J 13 (B4)

As Eq. (B-4) is a homogeneous system and is valid for the arbitrary value of Z3, the

current vector is identical to zero, i.e.,

II+12=0

13=0

hence, I1=-12 (B-5a)

13=(I4)=0 . (B-5b)

Similarly, the eigenvector for another odd resonance is obtained as

13=-14 (B-6a)

II =(12)=0, (B-6b)

The eigenvector for the even resonance may be obtained from Eq. (2-3) as ZI = Z2

and Z3 =Z4:

Hi

,r ,. ,.. . .i. . , ., . .. - - - ..o. . . . . .o " ,, o % %I o .. .... . % .p %

,F ,. -,","""-'"""".i.,. , , ., - . . ,.-.:,.- " -. . . - " ' .,: .".-. " "' '. ." -" °. -" " . ,, I . . . .. '" "-

,V , L . . ' -'.' .: . " ,._ o .-: ":. ': '' r ". , ',_, W : .. .. , r ,,, .
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(ZIlI +Z1 )11 +Z1212+Z13 (13+14)=0 (B-7a)

Z1211 +(Z11I +Z1 )12+Z13(13+14)=0 (B-7b)
Z13(11 +12)+(Z33+Z3 )13+Z3414=O (B-70)
Z13 (I1+ 12) +Z3413 +(Z33 +Z3 )14=O0 (B-7d)

* Subtracting Eq. (B-7b) from Eq. (B-7a) and so Eq. (B-7d) from Eq. (B-7c), we get

(Z11 +ZI - Z12) (11 -12) =0 (B-8a)
(Z33+Z3-Z34)(l3-I4)=O (B-8b)

Since the even resonance condition does not include the odd resonance conditions at a

time, the impedance factors in Eqs. (B-8) are not zero. T'hus,

I1I= 12 (B-9a)

13=I4 .(B-9b)

C. DERIVATIN OF EQS. (2-17) AND (2-18)

I 12 iac (C-la

VI =ZpI TZi (C3d
T2 Zp 2+Za ia(Cle
V3 = Z4 13+ Zb ibL(Cif

V4+1=i4+Zib (C-lg)

FromV Eq (Cla and +C-lb), we get

V2=Z 1 aia(-e

................................................................
U~~~~~aV = ZA 14 +4 Zb ib (C I g).. . . . . .. . .~ '
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ia+ib=1i+12+13+14 .(C-2)

From Eq. (C-i1b) and (C-i1c), we get

Zaia-(Zb+Zc)ib=-Zc(13+I4) .(C-3)

From Eq. (C-2) and (C-3), ia and ib, are obtaind:

ia= -Z±Z I I + ZbZ 12 + Zb 13 b 1 (C-4a)
Za+Zb4-Zc Za+Zb+Zc Za+Zb+Zc Za+Th-4Zc

Za+Zb+Zc Za+Zb+Zc Za+Th+Zc Za+ZbiZc

Inserting Eqs. (C-4) into Eqs. from (C-i1d) to (C-ilg), system of V-I equations are obtained

as follows:

Za+Zb+Zc Za-4Zb+Zc Za+Zb+Zc Za+Zb+Zc

V2= .Za(Zb±Zc Ii+(Zp+. Za(Zb±ZQ)) 12 ZaZ 3 aZ 14 (C-5b)
Za+Zb+Zc Za+Zb+Zc Za+Zb+Zc Za+Zb+Zc

V3= ~Za Zb~ 11+Za Zb- T2+(Zq+ Zb(Zc±Zl) 13+ Zb(Zc±Za) 14 (C-50)
Za+Zb+Zc Za+Zb+Zc Za+Zb+Zc Za+Zb+-Zc

V4= Za Zb1 aZ 12 - Zb(ZC±Za) 13+(Zq + Zb(ZQ±Za)) 14 (C-5d)
Za+Zb+Zc Za+Zb+Zc Za+Zb+Zc Za+Zb+Zc

or

VI ZI I Z12 Z13 Z13 Ii

V2 Z12 ZI IZ13Z13 12
(C-5e)

V3 Z13 Z13 Z33 Z34 13

1V4 i Z13 Z13 Z34 Z33 JL14J

where
Zii =Zp + ZaZb + Zc (C-6a)

Za +Zb +Zc

Z2=Za (Zb +Zc)-(-

Za +Zb +Zc

2Z33 =Zq +Zb Zc + ZL (C-6d)
Za +Zb +Zc

q~je *-, .
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Z34 = Zb(Z= Zal (C-6e)

Next, we derive Za, Zb,--, Zq as functons of Z parameters. For this, we solve

Eqs. (C-6). Divide Eq. (C-6b) by Eq. (C-6c) to obtain

Z12= 1 +Z& (C-7)
Z13 Zb.

* *Divide Eq. (C-6e) by Eq. (C-6c) to obtain

34 -1 + (C-8)
Z13 Za.

Modify Eq. (C-6c) to get
I + -Z&= za (-'' ZI Z b (C-9a)

Zb Z13 Zb
1 + -Z = Zb ( .- -L) (C-9b)

Za Z13 Za
Substitute Eqs. (C-9) into Eq. (C-7) and (C-8) to obtain

Zd2=Za(I - -L) (C-10a)
Z13 Z13 Zb

Z34Zb(..l - _L) or L=ZM3( -.L ) (C-10b)
Z13 Z13 Za Zb Z34 Z13 Za

Eliminate Zb in Eq. (C-10a) by substituting Eq. (C-10b) to obtain
Z13 2 -Z12 Z34Za = (C- 11)
Z13 -Z34

Inserting the result of Eq. (C-11) backward, all parameters are evaluated:

Zb = Z13 2 Z12Z4 (C-12)
Z13 -Z12
Z13 2 -Z12 Z347.c = - (C- 13)

Z13

Zp = Zll- Z12 (C-14)

Zq = Z33 -Z34 (C-15)

D. NORMALIZED IMPEDANCE MATRIX

For an N-port network, the impedance matrix is defined as

-.d 4 m . . " + , % , . + - ,. . % . . ' , , . +. , ' m ',* ,' ' .
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[VI=[Z][I] (D-1)

where

. [zV -- .I
V2I 121
VN, IN,

Zil Z12 -ZIN

%ZNl 1 ZNN

Now, we introduce a normalized voltage vector and a normalized current vector defined as

[ v ]=diag [ 1][V ](D-2a)

[i] = diag[ 4 -'] [I] (D-2b)

where Zoi is the characteristic impdance at the i-th port.

Substitute Eqs. (D-2) into Eq. (D-l) to obtain~[v] =diag ['] - [Z] diag [42c"i ]-1 I]

=[z34iI (D-3)
where

[ z ] normalized impedance matrix with each element as

Zj 71 i,j = 1, 2, --, N (D-4)

* diag[a i - 1 =diag[ai]-1 (D-5)

Meanwhile, voltages and currents are decomposed into forward wave component and

backward wave component:

•~ V: I = I V I+ + I V I- (D-6a)

.g. [i]= [i]-[i] (D-6b)

where superscript (+) refers to forward quantity and (-) refers to backward quantity. S

matrix is defined commonly in terms of normalized voltage vectors as
[vl'=[Slfv]+ . (D-7)

Substitute Eqs. (D-6) into Eq. (D-3) and make use of the relations that [v]+= [i] + and

[v]= [i]" to obtain

~ *4*~ **%~ **%~ % -. - . -4 * ~ .
~ ~> ;.
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[VJ~ I+ I z I+[ U I]-'[ I z I -[Ul [ V]-

or I[S][[z I+ [U I [z I[U]IJ (D-8)

where [ U I is a unit matrix. S matrix, i.e., S parameters are calculated regarding to

normalized z parameters as follows:

det 111 [z ) + [ U 111I

1 all a12 a13a13 z1 1 -1 z12 z13 z13I
a12 allI a13 a13 z12 z1 1-1 z13 z13

detll[zl+[U]I a13 a13 a33 a34 I z13 z13 z33-1 z34
.a13a13 a34 a33 J zl3 z13z34z63-1

detll[zj+[U]II 013 613 c33 c34 (D-l0a)

* where

all = (z33-z34+l) ((zll+1) (z33+z34+l) -2 z132 ) (D-l0b)
a12 = - (z33-z34+l) I z12 (z33+z34+1) - 2 M12) (D-l10c)

al 3 = - M1 (zi l-z12+l) (z33-z34+l) (D-l0d)
a33= (zll-z12+l) {(z33+)(zll+z12+l)-2zl3 2 ) (D-l1Oe)
a34 = -(zllI-z12+l) ( z34 (zllI+z12+1) -21M2  (D-l0t)
cl 1 =allI (zl 1-) +a12 z12 + 2a13z1M (D-l0g)

c02=all z12 +a12 (zll-l) +2 a13z1M (D-10h)
c13 = (al l+al2) M1 + a13 (633+64-1) (D-1i)
c33 = 2 al3M +a33 (63-1) +a34z64 (D-lj)

c34 =2 a13 M3+ a33 z34 +a34 (z33-1) (D-10k)
det 111 z ] + I[U] 11
=(zllI-z12+l) (z33-z34+l) I (zllI+z12+l)(z33+z34+l)-41M2 ) (D-11)

E. DERIVATION OF EQS.(3-1O)

For the notational convenience, the subscripts mn are mostly omitted in this section

and some abbreviation forms are listed in advance:
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B(I)-Amn(Q i =1, 2,

AM ABn) i= 1,2

D, E, F, G = Dnin, Emn, Finn, Gmn

'V, (P = 'I'in, 4Prn

Al 40 =4nn,vOs) i =1, 2

Ov)= Omn,vQs) i = 1, 2

Sl S2 S3 = sin B(1)hl, sin 8(2)h2, sin 8(3 ht

C1 C, = cos B(I)hl1, cos 8(2)h2, cos83)

Ctl, Ct2, Ct3 =C1/Sl, C2/S,2 , Cq/S3A

ZA =j (0g

Apply the boundary condition of Eq. (3-7a), i.e.,

S Et, = Et3

to Eq. (3-4a) and Eq. (3-6a) at z = 0, and take inner products over S with the orthogonal

functions Vt VI x z and Vt (P respectively to obtain

IVt'Vxz.(Etl-Et 3 ]ds=0 atz=0

Vt V .Et, -Et 3 ]Ids =0 atz =0

- BM1 ( OM()/y 1 ) Si I G (B(3 /yA 3 )S53 .(E-2)

Take the inner products over S with Vt 'V, Vt ~Px z for the boundary condition of Eq.

(3-7c) respectively to obtain

IVt V.[Ht3 -Ht, dsI Vt'V. Pv(1) Xv(') ds at z =0
s si

IVt(P xz.[Ht3 -Ht, ]dsJ VtT x z.Pv(') Xv(') at z =0
5 si

V*N , ,-*;
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(C+ D C3 } (0
3 )/zA) - AM') (31()/zA) C I = .Pv

(1) ) (E-3)

weeF + G C3 BMt C 1 =pv(') - 00~)(E4
where

40() f X v(1) - VtV ds

sl
Ov(1) f Xv() Vt(P x z ds

sl

Note that the integral region for 4v(), (r(1) is reduced to Si.

In order to apply the boundary condition of Eq. (3-7b), we may take the inner

product with function Xg so as to expect the same expressions as 4g, 0g for convenience.

The H field function Xg, however, is orthogonal to Et field. Hence, we use Xg x z

instead which is parallel to Et and integration is done only over S :

.f X xz-Etids=O at z =

sl

MN
M [ A g() l) x z *VtW x z ds + B(0)(13(l)/yA 1) fXg(l) x z *Vt(P ds] S1 = 0

nn sl sl

MN
or AO [A() kg(1) - B(0)(P()/yA 1) 9g(1)] S1 = 0 , = 1, 2, 3, - (E-5)

n

where following vector identities are used:

X x z .VtV x z = X .VtV

X x z .VtV= -A*VtP x z

Similar process is taken for the boundary conditions at the interface (U) to extract

unknown coefficents in Es. (3-5) and (3-6).

Take inner products over S with Vt ' x z and Vt () respectively for the boundary

condition of Eq. (3-8a) to obtain

f VtOxz-[Et2 -Et 3 ] ds=0 atz=t
5

f Vt(P.[Et2 -Et 3 ] ds= O  atz=t
S

4.-

°.

% %'% r - - - e e.-( -, "+ . . ....... '.".-.".-.-.-.-.-.-... ,-. .'....
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A (2 S2 = - C S3  (E-6)

B(2) ( B(2)/yA2 ) S2 =- F ( 8(3)/yA3 ) S3  (E-7)

Take the inner products over S with Vt V, Vt 'P x z for the boundary condition of Eq.

(3-8c) respectively to obtain

f Vt-V[Ht2 -Ht 3 ]ds=j Vt . PV( 2) XV( 2) ds atz=t
s s2

I Vt Pxz•[Ht 2 -Ht 3 ]ds=J Vt Pxz• Pv(2)Xv(2 ) atz=t
s s2

A 2 ) (p3( 2 )/zA) C2 - (C C3 + D ) (03()/zA) = P Pv(2)• 4v(2) (E-8)
B()C2 -[F C3+ G }= Pv(2) • 0V(2) (E-9)"-

where
4v(2) = s Xv(2) . VtW dss2|

Ov(2) XV 2) Vt( P x z ds

s2

Take the inner product over S2 with Xg x z for the boundary condition of Eq. (3-8b) to

obtain

Xgxz.Et2 ds=O at z=t
s2

MN

I [ A(2 Xp.( 2) x z .Vt V x z ds + B(2)(P3( 2)/yA2 ) f X.(2) x z .Vt (P ds] S2 =0
n s2 s2

MN

or X [A(2) 4g(2) - B(2)(0(2)/yA2 ) (p;(2) 1$ = 0 , = 1, 2, 3,- (E-10)
mn

Elininat Cmn, Dimn, Finn, and Gmn in Eqs. (E-3), (E-4), (E-8), and (E-9) by

substitution of Eqs. (E-1), (E-2), (E-6), and (E-7) to obtain

-[P3(I)C1S3+(30)S IC31A(I)-(3)S2A(2) = S3zA £" Pv().4v() (E-1 la)

I (3)S 1A~t)+[I3(2)C2 S3 +J3()S 2 C3 ]A( 2) =S 3z^ X pV(2).4V(2) (E- 11 b)

-[p(3)C1 S3 +(e3/E0(3)s 1C3 ]B(')-(E3/ 2 )3( 2)S2 B(2) = i3P)S31 Pv(I).Ov(I) (E- Ic)

(-3]E1)P}(1)S IB(1)+[[}3)C2S3+(E3]E2)[}(2)S2C3]B (2) = P[3)S3X PV(2).OV(2). (E-1 ld)

,.

_a.
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* Solve Eqs. (E- 11) for Amn~1 ), Amn( 2 ), Bmn~1 ), Bmn( 2) to obtain

AM= a("I 1)1XV- + a(12)X Pv(2).4v(2) (E-12a)

= pVI.VI + a(2 pV(2).4(2) (E-12b)

BM=bI1 ,P~)(vl + b(12) y ~,2.~2 (E-12c)

B()= b(21) Pv(1).e(I~) + b(22) y pV(2).OV(2) (E- 12d)

where

amn( 1 )~ = Ka ( IS I)( (( 2)Ct2 + B(3)Ct3 ) (3-12e)

an1)= Ka (1I/ (S IS3 ) )83) (3-12f)

arn( 21) = - Ka (1l/ (S2S3) ) j3(3 (3-12g)

an2)= - Ka (1I/S2 ) ( B)Ct I + B(3)Ct3 ) (3-12h)

Ka = zA I B(3)2 -B (8((2)C 2+()B(1)B(2)Ctit

"S ~bmn( 1 )~ Kb ( 1I/SI) (8(3)Ct 2+(e' 2)()Ct 3 )(31i

bmn(12 ) Kb ( 1/ (S ISP) (E3/6 2) 8(2) (3-12j)

~~ -~ bmn 21
- Kb (I/ (S2 S 3 )) (F-3/ 1) ()(-2)

bmn(22 = Kb (1/S2 ) (8(3)Ctl+(E3/e1 )B(1)Ct3) (3-121)

Kb = 13( 3)/[ (c3/F-l)(E./r12)6)B( )33)t I ( (ey'e- )B(I)Ct 2+(c3/F-2 )B(2 )Ct1 -BI3) 2Ct1 Ct2

Finally, substitute Eqs. (E-12) into Eq. (E-5) and Eq. (E-10) to obtain

+ - 0(E- 13a)

VM V M(2
pV(I' tUiJV(21) + -V2 g(2 0 (E- I 3b)

"'1 .1, 2,3, V2 M

S. where

MN

mn ij ,Uj1
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Eqs. (E- 13) are refered to as a homogeneous system of equations in terms of unknown

coefficients pvO) ( i = 1,2 ), and are expressed in the matrix form as follows:

[U][P]=0

or

v= 1 2 vim v=1 -- v2M
±= i UVP' "('" "(" "''P( 1I U U12 .. . . Il vim U11 ...

2 u 2 U22 P 2 ,,(,, (,

2 ( 12 )  (1)

m UVIM 1 UVIM VIM: --- M V ZM PVIM 0
........................................ .... ............... .. o.......

(21) (22) (2)

v 2M u (21) i(21) i(22) P (2)U2M U------------ U2 UIM: - UP2M V2 2M

(E- 14)

Integral values of 0v(, ()v(') are derivedx as follows. First, we get the scalar potantial

~vector functions as

'2 Vt= P ( x =Ii sin m--Jx cos MJy + y n-nZ cos rnEx sin DA~y ) (E- 15a)
,.a a b b a b

,%Vt (P x z =P (x nDA sin rMix cos D-AY - y m--! cos m--/x sin M, ) (E- 15b)
b a b a a

where

I I 0

P S En 11 i o=

P = I.. *i=g{ 2

a b kc
c (m&)2 + (2) 2

Take integrals of the product of Eqs. (E-15) and Eqs. (3-13), (3-14), we get

J

Vt' =. . . .. . . . .. . . . . . . . . . . ..osr xsnfl y) (E-5a



4x,mn,rs(l) -fXx,rs('). VtN'mn ds
si

a2-p in& lLsin lUx sin -mXx dxjf Cos -11 c-y sin -U(--l dy
a o a a (b-wl) b wi1 2

2

a 2
where

8&j=(0 i~j
I i=j

V HJ(s,n,wl,b)

- isinii) for s-
(22 b wi

- (sit/wl) -[osng(b-wl) -(-lY-Scos nit(b+wl} for -n- * I (E- 17)
(sir/wi) 2 -(nit/b) 2  2b 2b b w I

'-y,mnjrs(l) -JXy~rs(l). Vt'Vmn ds

si

a Cos -M( (bwl)}
-Pa aMCsm'x o xd 2 sin -am wi 2 d

2 wI1/2
P pulL a.. rm SI(s,n,w I,b) (E- 18)

where

SI(s,n,wl ,b)

(n-s-I1) (nl.±i1) nsee
-1tl[-)2jo(pmK - uL, 11) + (_ 1)2jo( n l-s7C)wl 1)1 n + s odd (E- 19)I4 b w1"2 b 'w1 2

Jo :Zero order Bessel function of the first kind

Oxmnrs(l) f Xx,rs('). Vt(Pmn x z ds

a 2 L
= PVIflA sin Mfllx sin rlC x dxJf cos fllcysin -M -yuwi) dyb 6 a a (b-wi) b Y wfy2

2
= -tR -~LA 8&rmIH(s,n,w1,b) (E-20)b 2

agE j. -r
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Oy,mn,rs~'l- Xy,rs(1 ). Vt~Pnn x z ds

a (bwl Co (-W1)
=..p HZf Cosifl x Cos-Mx dx f 2 si 7 y2 dy

a 0  a a bw) b ~ -y~~xzL2 ) 2

a~m wl/2U

s22

bs2o
b (acw2) Cos J 2 ( (a-wi2)

a0 b b (a-w2) a ~ 4ix-a/2 )2 d
2 w2/2

=- P m7E -b-- Ssn SI(r,m,w2,a) (E-22)
a Sn

4y,mn,rS(2) - yr( 2)- Vt'Vmn ds
s2

b 2 *a-w2

p n7 i PM i 7 yf2Cos ifllx sin m2L-kx) dx
b 0  b b (aw) a wZ 2

=' - 7 pI-& . Ssn I(r,m,w2,a) (E-23)

ox,mn,rS(2) - Xx rS( 2). Vt~Pmn x z ds
s2'

b (w22 (a-w)
p i o 7 o Oyd sin M7E Lx w2 2 dx

b o b b (aw) a ___2 )
2 w2/2

=P n~l -k-- Ssn SI(rm,w2,a) (E-24)b 8n

Gy,mn,rS(2) X ~yrS(2). Vt(Pmn x z ds

b2
p = jn& 1f sin Am-ysin JU-y dy f CsJM i J-xaw)d

a 0 aw) a w2 2

=-p MlL -.b-. Ssn HI(r,m,w2,a) (E-25)Ka 2
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Here are summary of 40 Ov(O)

4l)=- Pmnm -M&- 8rm IU(s,n,wlI,b) (E-26a)
a 2

YI =-L. J Srm SI(s,n,wl,b) (E-26b)
b 8m

X(2) = - pMn Ml b Ssn SI(r,rn,w2,a) (E-26c)
a 6n

-2 - Pmn -M1L -b 8sn HI(r,m,w2,a) (E-26d)
b 2

Ol)=Pmn n" A- Br & HI(s,n,wl,b) (E-26e)
b 2

...L = m M rm SI(s,n,wl,b) (E-26f)
a Sm .

OX(2) - PmnM LZL Ssn SI(r,m,w2,a) (E-26g)
b 8n

y .y(
2) -- Pmn Ml -b- 8sn HI(r,m,w2,a) (E-26h)

a 2

4-.-, i=0
2 i 0

HI(s,n,wl1,b)

W1 sinLL-DA for S
{ 22 b wi

- (sx/wD [cos nix(b-wl) -(-l)-scos nit(b+wl' for -a * S
*(Sir/wi) 2 -(nnM,) 2  2b 2b b wi

SI(s,n,wl,b)

=0 (--)(s-)n + s: even

-c I 1~ -) 2Jo(I-f&- 1 ) + 1)j( -nn)1 n + s: odd
4 b w1 2 b wf 2

d6

W-~
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F. CHOICE OF rs COMBINATION
The numbers for r and s and the choice of x or y component for 4t and 1 are

I> assigned according to the number v in Eq. (E-14). An example of rs combination is

presented here ; actually, the results in chapter 4 are calculated by this combination.

Table F-i shows the example. In Table F-1, as M-M wall case with v = 1 (odd

number), for instance, X y(1) is chosen at interface (I) for t and 1. calculations so that

the first combination of r' = 0 and s' = 0 is assigned. Next r' s' combination for v = 3 is

that r' = l and s' = 0. With v for even number, Xx and is chosen.

Table F-I rs-table

at Interface(I)

v=even v=odd
(A) (B) Xx (Jy) Xy (Jx)

r'=O, 1,2,-- r'=O, 1,2,-- r=2r'+ I
M M S'= s'= s=2s'

r'= 1,2,3,-- r'=0, 1,2,-- * r=2r'
s'= s'=O S=2S'

M E r'=O0, 1, 2, -- r=O, 1,2,-- r=2r'+ I

s= s'=0 S=2s'+ I

JoJ

. °° °% - •°o. ,,° " o .' '°." .o. ".. .... .. . . . . . . . . . . . . . . ... ,,.. . .,. .-. .... . . . . . . .. . .. ,. ." . . . . .-.- . . %
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at Interface(II)

Wall Y=odd v=even

(A) (B) Xx (JY) X(y (Jx)

r'=0 r'=l r=2r'
M M s'=O, 1 ,2,-- s'=O, 1 ,2,-- s=2s'+ 1

E M r'=O r*=O r=2r+ I
s'=O, 1 ,2,-- s'=O, 1 ,2,-- s=2s'+ 1

M E r*=O r=1I r=2r'
M E s '0, 1,2,-- * S = 1 ,2,3,-- s:2s '

*The foundamental resonance mode is described as r'=lI(interface(I)) or

s'=1 (in terface(ll)) instead of the first combination with r'=-O or s'=-O

Note that transverse distribution of each current, i.e., longitudinal or transverse

current, is represented only with one term in Table F-i1; transverse distribution may be well

expressed only with one term while many terms are needed for the expansion of

londitudinal distribution because of discontinuiteis.

P S



48

REFERENCES

N, [1] H. Ogawa, M. Aikawa, and K. Morita, "K-Band Integrated Double-Balanced Mixer,"

IEEE Trans. Microwave Theory and Tech., Vol. MTT-28, pp. 180-185, march 1986.

[21 R. Sorrentino and T. Itoh, "Transverse Resonance Analysis of Finline Discontinuities,"

IEEE Trans. Microwave Theory and Tech., vol. MTT-32, pp. 1633-1984, No. 12,

Dec. 1984.

N [3] R. E. Collin, Field Theory of Guided Waves, McGraw-Hill Book Company Inc.,

1960.

[4] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book

Company Inc., 1961

[5] T. Itoh and R. Mittra, "A Technique for Computing Dispersion Characteristics of

Shielded Microstrip Lines," IEEE Trans. Microwave Theory and Tech., vol. MTT-22,

pp. 896-898, No. 10, Oct. 1974.

[61 D.V. Giri, S.H. Chang, and F.M. Tesche, "A Coupling Model for a Pair of Skewed

Transmission Line," IEEE Trans. Electromagnetic Compatibility, vol. EMC-22, No. 1,

pp. 20-28, Feb. 1980.

[71 R. Jansen, "Hybrid Mode Analysis of End Effects of Planar Microwave and

Millimetrewave Transmission Lines," lEE Proc., vol. 128, Pt. H, pp.77-86, No. 2,

April 1981.

"Ne

6.!

, i

'S .. 1..o % o . I " . o , . + .+. .. . + . . .•. .• .,• ,,. +. + - . . .



49

PROGRAM LIST

PROGRAM CROSS2

* Subroutines in IMSL are required in LINKing

Real Ea(i80)
Common /size/a,b,wi,w2,hih2,t

sCommon /Para/Freq,Er1,Er2,Er3
Common /Tran/MEwall, Nreso, NHmat, Nmax, icount, coef 1
Common /Mat /Ea

External RSNTR1

OPEN (FILE-' CR0552 .DAT', UNIT-7, STATUS-' OLD')

* rite(*,90i)
901 format

- ' Cross-Striplines 1986-0227, 1986-0404'

by Tom Uwano'/

-I' w2
/ b -- - - - - - - - - - -Z

-P1 ii 1-------------------------h2v
-I'1k i 1 1 Er2 (II) 1

-I -------- i--i -------- 1 1 w2 1

- 'b/2 1 i i lwi (111)1--------- *-------- 1 t

1.........i--i--------- 1 Er3 1------------------- 10'

-I i 1 1 1
-I i 1 1 Enl MI 1
-I' 1 i i 1-------------------------- - hi

- @ z --------------------
-' 0 a/2 a x

-I' Frequency [MHz] 'I

write(*,*) 'Input 0(MMwall),l(EMwall,x.a/2) or 2(MEwall,y-b/2)1

read(*,*) MEwall
if(MEwall.EQ.0)
-write(*,*) 'Input 0(cornbination),i(region(I)) or 2(region(II))'

if(MEwall.EQ.1) write(*,*)'Input 0(combination) or i~region(U)
if(MEwall.EQ.2) vrite(*,*) 'Input 0(combination) or 2(region(II))'

read(*,*) Nreso
if((MEwall.EQ.0.AND.Nreso.NE.2).OR.MEwall.EQ.1) then

write(*,*)'Input approximate a in [nun)
read(*,*)a
write(*,*)'Input b(fixed) in [no]'
read(*,*) b

else
N vrite(*,*)'Input approximate b in [mm]'
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read(*, *) b
write(*,*)'Input a(fixed) in (mm]l
read(*,*)a

endif
write(*,*)'Input hl,t,h2 in (mm]'
read(*,*) hl,t,h2
write(*,*)'Input wl,w2 in (au]'
read(*,*) wl,w2
write(*,*) 'Input frequency in [MHz]'
read (*, *) f req
write(*,*)Ilnput Erl,Er2,Er3'
read(*,*) Erl,Er2,Er3

a - a*l.e-3
b - b*l.e-3
hl-hl*l .e-3
t - t~l.e-3
h2-h2*l .e-3
wl-wl*l .e-3
w2-w2*1 .e-3
freq-freq*l .e-3
if((MEwall.EQ.O.AND.Nreso.NE.2).OR.MEwall.EQ.l) then

ax-a

else
ax-b

endif

write(*,*)Ilnput m,n max'
read(*, *) Nmax
vrite(*,*) 'Matrix size (2N x 2N). Input N'
read (*, *) NHmat
Np-2*NHrnat-1

q-freq*l .e3
ME-MEwall
write(7,902)a,b,hl,t,b2,wl,w2,q,Erl,Er2,Er3,Nmax,NHmat,ME,Nreso

902 format('a - 1 E13.6/'b -',E13.6/'hl-',El3.6
- P t -, ,El3.6/'h2-',E13. 6/'wl-',E13.6/ 'w2-' ,E13. 6
- /'freq-',El3.6,' MHz'/'Erl,Er2,Er3-',3F7.2
- /lm,n max -',15
- /'Matrix 2N x 2N, N-',I3/'MEwall-',I3/INreso -',13)

icount-O
coefl-1.
Call ZERO2(RSNTRl,ax,ier)
if((MEwall.EQ.O.AND.Nreso.NE.2) .OR.MEwall.EQ.1) then

write(*,*)' final a in (nun] =',ax*l.e3,ier
write(7,*)' final a in (mmJ =',ax*l.e3,ier

else
write(*,*)' final b in (umm] 'I,ax*l.e3,ier
write(?,*)' final b in (Imm] ',ax*l.e3,ier

endif

*rt (, (E 67 I . (a i , -,p

vrite(7,'(4El6.7)') l.,(Ea(i),i-1,Np)

writ-( 9(4E1.)' W,(E ),iulNp

% %%
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stop
end

FUNCTION RSNTR1 (ax)

* Cro33-Striplines 1986-0226,1986-0401
* by Tom Uwano

* y
* w2

*b -- - - - - - - - - - -z

* 1 i 1-----------------------------h2
*1 j j 1 1 Er2 (II) 1

I 1-------- --- 2.---------1 1 w21
*b/2 1 i j lwi (III) 1-------- ***------ 1 t

*1-------- -- i -------- 1 Er3 1 -- =-------=-====l 0

* 111 Erl (I)
* 1ii1---------------------------- -hi
z* - - - - - - - - - -

*0 a/2 a x
* Frequency (GHz)

4~4~Integer*4 MNmax,mn
~ '~Real mu0,KKO,Kkl,Kk2,Kk3

Real U(2,2),El(32400),Ed(i80),wk(180),Esi(8i00),Es2(8i00)
Real Ep(32O4l1 ,Ea (180)
Complex JJ
Complex zhat,yhati,yhat2

* *Complex Btmni,Btmn2,Btmn3
Complex aii,ai2,a2i,a22,bii,bi2,b2i,b22
Complex SIi,SI2,SI3,COi,C02,C03,TAi,TA2,TA3
Complex dela, delb, zdela, b3delb

* Complex x, FARG, CMCOS, CMSIN

Common /size/a,b,wi,w2,hi,h2,t
Common /Para/Freq,Eri,Er2,Er3
Common /Tran/MEwallNreso.NHmat, Nmax, icount, coef 1
Common /Mat /Ea

/' Parameter (JJ-(0.,i.),pai-3.i4i5926)
Parameter (epsi0-8.855e-12,mu0.pai*4 .e-1)

----- Function definition -----

FARG(X)-REAL(X)+JJ*SIGN(i.,AIMAG(X))*AMINi(70.,ABS(AIMAG(X)))
CMCOS(X)-CCOS(FARG(X))

V CMSIN(X)-CSIN(FARG(X))

----------------------------

if((MEwall.EQ.0.AND.Nreso.NE.2) .OR.MEwall.EQ.i) then

a-ax

- - w1~ ** ~ ' * 5 5**.. . .**- p~*~ p.~pv -5''. -. 5 5AA '
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else
b-ax

endif
Nmat-2 *Nmt
Np-Nmat-l

* NHp-NHrnat -1

Er3l=Er3/Erl
Er32-Er3/Er2
Omega-2.*pai*Freq*l e9
KkO=Omega*Omega*muO*epsiO
Kkl-Erl *KkO

* Kk2-Er2 *KkO
Kk3-Er3 *KkO
zhat-JJ*Omega*muO
yhat 1-JJ*Omega*epsiO *Erl
yhat2-JJ*Omega*epsia *Er2

---- Matrix Size N x N (N- 2 x Mumax)
Muinax-NHnmat
Numax-Mumax

Nniax-Nxnax

* MNmax-Nmax*Nmax

do 201 mu-1,Muax
do 201 nu-1,Nwriax

Cal*TLililiy~ul

Call RSTBL(ir2,is2,ixy2,mu,2)
Call RSTBL (ir2,is2, ixy2,mu, 2)
Call RSTBL(jr2,js2,jxyl,nu,1)

-------------- Begining of Summation in terms of M,N---

*( 1 ) O

U(1, 1)-O.

U(2,1)-0.
U(2,2)-0.

do 202 mn-1,MOimax
Call MNTBL(m,n,xnn)

if(irl.NE.m.AND.Jrl.NE.m.AND.is2.NE.n.AND.js2.NE.n) go to 1

GGmn- (Float (in)*pai/a) **2 r(Float (n) *pai/b) **2
Btmnl-CSQRT(CMPLX(Kkl-GGmn))

* Btinn2-CSQRT(CMPLX(Kk2-GGnn))
Btinn3-CSQRT (CMPLX (Kk3-GGmn))

COl-CMCOS (Btmnl*hl)
C02-CMCOS (Btmn2*h2)
C03-CMCOS (Btinn3*t)
SIl-CMSIN (Btmnl*hl)
S12-CZMSIN (Btinn2*h2)

JR ' u .',. %U
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S13-CMSIN(Btmn3*t
TAl-SII /COl
TA2-SI2/C02
TA3-SI3/C03

dela=Btmn3*Btmn3*TAl*TA2*TA3-Btmn3* (Btmn2*TAl+Btmnl*TA2)
-Btmnl *Btn2 *TA3

V delb=Btmnl*Btmn2*Er31*Er32*TAl*TA2*TA3
-- Btrnn3* (Btmnl*Er3l*TAl+Btmn2*Er32*TA2) -Btrnn3*Btmn3*TA3

zdela-zhat /dela

all- zdela* (Btmn2*TA3+Btmn3*TA2)
a12- (1. /C03) *zdela*Btmn~r3*TA2
a21--(l./C03)*zeaBtn*~

a22--zdela* (Btmnl*TA3+Btmn3*TAl)
b3delb-Btmn3/delb
bll= b3delb* (Btmn3*TA3+Btrnn2*Er32*TA2)

b12' (1. /C03) *b3delb*BtmnJ2*Er32*TA2
b2=- (1. /C03) *b3delb*Btmnl*Er3l*TAl
b22=-b3delb* (Btmn3*TA3+Btmnl*Er3l*TAl)

F * Call GSITHl(Grnul,Tmul,ixyl,m,n,irl,isl)

Call GSITH2(Gmu2,Tmu2,ixy2,m,n,ir2,is2)
Call GSITHl(Gnul,Tnul, jxyl,m,n,jin, isi)
Call GSITH2 (Gnu2,Tnu2, jxy2,m,n, jr2, js2)

* l-IA(TIGu~l*nlT1BmlyalTu~l*nl

Ull-AIMAG( TA1*Gmul*all*Gnu2-TAl*Btmnl/yhatl*Tmul*bll*Tnul)
U21-AIMAG( TA2*Gmul*al*Gnu2TAl*Btmnl/yhatl*Tmu2*bl*Tnul)
U21-AIMAG( TA2*Gmu2*a2l*Gnu2-TA2*Btmn2/yhat2*Tmu2*b22*Tnul)

U(2,1)=U(2,1)+U21

U' (2, 2)-U (2, 2) +U22

1 continue

202 continue

------------------- End of Summation----

do 203 i=1,2
do 203 J=1,2

Call MXTBL(k,l,i, j,nu,mu,Numax)
kl=k+Nmat* (1-1)
El(kl)-U(i,j)

203 continue

201 continueI

-------- process to avoid overflow in the determinant

* icount-icount+l

if(icount.EQ.1) then
SUM-O.

~ I N *~~~** ~ .F~%
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do 205 i-l,Nu'at

205 sum-sum+ALOG(ABS(E1(kl)))
coefl-EXP ((10. -sum) /FLOAT (NMat))

else
endif

do 206 i-1,Nrnat*Nmat
206 El(i)-coefl*El(i)

----------------------------- end of process

do24i-,*a

do 204 i-l,NHmat

ij=i+Nflmat* (j-l)
kll=i+Nmat* (j-l)

kl2=i+N~Hmat+Nmat* (j+NHmat-1)

N Esl(ij)=El(kll)
Es(j)E.k2

204 continue

-,----------------------- Finding Pnu--

if(Nreso.EQ.0) then

J do 207 i=1,Np

207 Ea(i)--El(i)
do 208 i-l,NP*NP
kl=Nmat+i+ (i-i) /Np

208 Ep (i) El (kl)
Call LINv3F(Ep,Ea,2,Np,Np,d,d2,wk,ier)
endif

ifNeoE..N.~a.E1 Eal--I.)/s(~mtl

if(Nreso.EQ.2.AND.NHmat.NE.l) Ea(l)=-E2(1)/E2(NHmat+l)

----------------------------

Call LINV3F(Es1.Ed,4,NHmat.NHmat,dlvd
2 ,wk,ier)

detl-dl*2.**d2
Call LINV3F(Es2,Ed,4,NHmat,NHiat,dl,d

2 ,wk,ier)

det2-dl*2.**d2
Call LINV3F(EIl,Ed,4,Nmat,Nma~t,dl,d

2 ,wk,ier)

dettdl*2 .**d2
if (Nreso .EQ. 1) RSNTRl-detl

if (Nreso.EQ.2) RSNTR1ldet2

if(Nreso.EQ.0) RSNTR1-dett

if((MEwall.EQ.0.AND.Nreso.NE.
2 ) .OR.MEwall.EQ.l) then

write (*, *) a*1.e3,dett,detl,det
2

write(7,*)a*l.e3,dett,detl,det
2

else
write(*, *)b*l.e3,dett,detl,det

2

write(7,*)b*l.e3,dett,detl,det
2

endif

return
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END

------------------ END of RSNTRI

------------------ Begining of Gsi ans Theta calculation

SUBROUTINE GSITHi (Gi, Ti,ixy, im,in, ir,is)

* Gsai and Theta on the interface btwn MI and (III)

* 1986-0226, 1986-0402

SReal m,n

Common /size/a,b, wl, w2
Parameter (pai-3.1415926)
DL(I)-FLOAT(MIN(I+1,2))
DLIJ(I,J)-FLOAT(1/ (lABS (I-J)+l))

m=im

rlir
* s-i-s

if(ixy.EQ.1) go to 1

* if(ixy.EQ.2) go to 2

--- x and interface MI

1 continue
if(ir.EQ.im) then

pma-m*pa i /a
pnb-n *pa i/b

* - GGmn-pra *pma +pnb *pnb

Gmnn=SQRT (GGmn)
Pmn=SQRT(DL(im) *DL(in)/ (a*b) )/Gmn
DD=DLIJ (ir, im)
Fsn=FI1(is,in,wl,b)
G1--Prnn*pma* (a/2.) *DD*Fsn
Ti- Pmij*pnb*(a/2)*DD*Fsn

else

G1-0.
T1=0.

endif
return

a---- y and interface MI

2 continue

if(ir.EQ.im) then
pma-m*pai/a
pnb-n*pai/b
GGmn-pna *pma+pnb*pnb

Grnn-SQRT (GGmn)
Prn-SQRT(DL(im) *DL(in) /(a*b) )/Gmn
Di-DL (im)

DD-DLIJ(im,ir)

%N A- %
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Fsn-F12 (i3, in, wl,b)
G1--Pmn*pnb* (a/Dl) *DD*Fsn
Tl=-Prnn*pma* Ca/Di) *DD*Fsn

else
4. G1-0.

T1=0.
endif

return
end

SUBROUTINE GSITH2 (G2,T2,ixy,im,in,ir,is)

* Gsai and Theta on the interface btwn (II) and (III)
* 1986-0226, 1986-0402

Real m,n
Common /size/a,b,wlw2
Parameter (pai-3.1415926)
DL (I) -FLOAT (MIN (I+1, 2))
DLIJ(I,J) -FLOAT(l/ (IABS (I-J) +1))

M-im,
n-in

S-is

* fiyE.1 ot

if(ixy.EQ.2) go to 1

---x and interface (II)

1 continue

if(is.EQin) then
pma~-m*pa i/a
pnb-n*pai/b

Gm-m*pma+pnb*pnb

V. Gmn-SQRT(GGmn)
* ~~PrnnSQRT (DL (im) *DL (in) /(a*b) )/Gmn

D1=DL (in)
DD-DLIJ(is, in)
Fsn-F12 (ir, im, w2, a)
G2=-Pmn*pma*(b/D1)*DD*Fsn
T2= Pmn*pnb*(b/Dl)*DD*Fsn

else

G2-0.
T2-0.

endif
return

i---- y and interface (II)

2 continue

if(is.EQ.in) then
pina-q*pai/a

S.%,. -
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pnb-n*pai/b
GGumn-pma *pmpa+pnb*pnb
Gmn-SQRT (GGmn)
Pmnn=SQRT(DL(im) *DL(in) /(a*b) )/Gmn
DD-DLIJ(i3,in)
Fsn-FI1(ir,im,w2,a)
G2--Pmn*pnb* (b/2.) *DD*Fsn

N T2=-Pmn*prna*(b/2.) *DD*Fsn
else

G2-0.
T2=0.

endif
return
end

---------------------------- end of Gsi and Theta

FUNCTION FIl (is, in,w,b)

Real
pai=3.1415926

S=is
n-in
psw-s*pai/w
pnb=n*pai/b
if (pnb.EQ.psw) then

FIl=-w/2.*SIN( (n-s) *pai/2.)
else

V h= psw/(pnb*pnb-psw*paw)
c=COS(pfb*(b-w)/2.)-(-l.)**is*COS(pnb*(b+w)/2.)

FIl=-h*c
endif

M return

* end

FUNCTION F12(is,in,w,b)

Real n
pai-3.1415926

S-is
n-in

bl~V if(MOD((in+i3),2).EQ.O) then

F12-0.
else

~~. argi-ABS (n*w*pai/ (2. *b) +s*pai/2.)
arg2-ABS (n*w*pai/ (2. *b) -s*pai/2.)
h-BSJO (argl) *(-1.) **(C(in+is-l) /2)
c-BSJO (arg2) *(-1.) **((in-is-i) /2)
F12-.w*pai/4. *(h+c)

endif
return
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end

w. * SUBROUTINE MXTBL(k,l,i, j,Nu,Mu,Nmax)

* return
end

SUBROUTINE RSTBL(ir, is, infoxy,NNu, i)
Common /Tran/MEwall,Nreso,Nmt,Nmax,icount,coef 1

* fiE.) ot

if(i.EQ.1) go to 1

1 continue
-------------------- Interface (I)--------------

if (MOD (NNu,2) .EQ.O) then
* r,s for the Xx(1) NNu:even '

infoxy-1
n=NNu/ 2
iir-n-1
if (MEwall .EQ. 1) iir-iir+l

if(MEwall.EQ.2) iis=O
if(MEwall.EQ.O) then

ir=2*iir+.
is-2*iis

endif %'
if(MEwall.EQ.l) then

ir-2*iir
is-2*iis
endif

if(MEwall.EQ.2) then
ir=2*iir+l
is=2*iis+l

4 endif
else
*r,s for the Xy(l) NNu:odd

infoxy-2
n= (NNu+1) /2

iir-n-1

if(MEwall.EQ.O) then
ir-2*iir+1
is-2*iis
endif

* if(MEwall.EQ.1) then

irdum-iir
if(irdum.EQ.O) iir-.
if(irdum.EQ.l) iir-O
ir=2*iir
is-2*ii3

%e~
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endif
if(MEwall.EQ.2) then

ir=2*iir+l
is=2*iis+l
endif

endif
return

2 continue
------------------- Interface (ii)--------------

if(MOD(NNu,2).EQ.O) then
*r,s for the Xy(2) NNu:even

'U. infoxy-2

n=WNu/2
ii s-n- 1
if (MEwall.EQ.2) iis-iis+1
iir-1
if(MEwall.EQ.1) iir=O
if(MEwall.EQ.O) then

* ir=2*iir
is=2*iis+l
endif

if(MEwall.EQ.1) then
ir=2*iir+l
is=2*iis+1

A - endif
if(MEwall.EQ.2) then
ir=2*iir
is-2*iis
endif

else
*r,s for the Xx(2) NNu:odd
infoxy=1
n-(NNu+1) /2
iis=n-1
iir-O
if(MEwall.EQ.O) then

V ir-2*iir
is-2*iis~l

endif
if(MEwall.EQ.1) then

* ir-2*iir+l

is-2*iis+l
endif

if(MEwall.EQ.2) then
i sdum-iis
if(isdum.EQ.O) uis-1

* * if(isdum.EQ.1) iis-O
ir-2*iir

.4 is-2*iis
endif

endif
return
end

* ~ ~ ~ % %1**~,,. d. %/'' %
'U%I''L-
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SUBROUTINE MNTBL (in,n,MN)
Common /Tran/MEwall,Nreso,NHmat,Nmax, icount, coef 1

M M-M Wall case
Integer*4 MN
n= (MN-1) /Nmax
m=MN-Nmax*n-1
if(MEwall.EQ.O) then
m=2*m+1
n=2 *n+1
endif

if(MEwall.EQ.1) then
m=2 *m
n-2 *n+1
endif :

if(MEwall.EQ.2) then
in=2*m+l
n-2 *n
endif

return
end

FUNCTION BSJO(x)

*Bessel function 1986-0226
ax=ABS (x)
if(ax.GT.3.) go to 1
x2=x*x/9.
x4=x2*x2
xE=x2 *x4
x8S'x4 *x4
xlO=x2*x8
xl2=x6*x6
BSJO-1.-2 .2499997dO*x2+1.26562O8dO*x4-O.3163866dO*x6

-+O.O444479dO*x8-O.OO39444dO*xlO+O.OOO21dO*x12

return
1 continue

xl=3. /ax
x2=xl *xl
x3=xl *x2
x4=xl *x3
x5=xl *x4
xE-xl*x5

f- O.79788456dO-O.OOOOOO77dO*x1-O.OO55274dO*x2-O.OOOO9512dO*x3
-+O.OO137237dO*x4-O.OOO728O5dO*x5+O.OOO14476dO*x6

t-ax-O.78539816dO-O.O4l66397dO*xl-O.OOOO3954dO*x2+O.OO262573dO*x3
-- 0.0054125dO*x4-O.OOO29333dO*x5+O.OOO13558dO*x6

BSJO-f*cos (t) /SQRT (ax)
return
end
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SUBROUTINE ZERO2 (Funcx, jer)
* 1986-0321, 1986-0502
* by Tom~ Uwano

ier=1 no root
* ier=2 dosen't converge
* 5% step toward +

Implicit Real*8(a-h,o-z)
Real x,Func,ylast
ier=0
xl=x

step=0.05*DABS(xl)
yl=Func (SNGL (xl))
ylast=SNGL (yl)

A., if(ylast.EQ.0.) then
x=xl
return
endif

x3=x1+step
y3=Func (SNGL (x3))
ylast=SNGL(y3)
if(ylast.EQ.0.) then

x-x 3
return
endif

* if(yl*y3.LT.0.) then

'.5 x2=xl+ (x3-xl) *yl/ (yly3)

S. y2=Func(SNGL(x2))
5' xlast=x2

ylast=SNGL (y2 )
if(ylast.EQ.0.) then
x=xlast
return
endif

else
xnew=xl+ (x3-xl) *yl/ (yl-y3)

del=y3-yl
if(del*yl.LT.0.) then

* forward step

x2-x3
y2-y3
x3=x3+ (x3-xl)
if(xnew.LT.x3) x3=xnew+0.01*DABS(xnew)

y3-Func (SNGL (x3))
xlast=x3
ylast-SNGL(y3)
if(y2*y3.LE.0.) go to 100

do 201 1-1,5

xnew"'x3+ (x3-xl)

xl -x2
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x2-x3
x3-xnew
yl-y2
y2-y3
y3-Func (SNGL (x3))
xlast-x3
ylast-SNGL (y3)
if(y2*y3.LE.0.) go to 100

201 continue
ier-1

els backward step

y2-yl

if(xnew.GT.xl) x1lnew-0.O1*DABS(xnew)
yl-Func CSNGL(xl))
xlast-x1
ylast-SNGL (yl)
if(y2*yl.LE.0.) go to 100
do 202 1-1,5
xnew-xl- (x3-xl)
x3-x2
x2-xl
xl-xev
y3-y2
y2=yl

'3 yI-Func (SNGL (xl))
xlast-xl
ylast=SNGL(yl)
if(y2*yl.LE.0.) go to 100

202 continue
ier=1

return
endif

* endif

100 continue
if(ylast.EQ.0.) then
x-xl ast
return

* endif

do 203 i-1,10
Ap- if(i.NE.1) then

I y2-Func (SNGL (x2))
xlast-x2
ylast-SNGL (y2)

* if(ylast.EQ.0.) then
4 x-xlast

return
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endif
endif

* Call ABCNEW(xnew,xl,x2,x3,yl,y2,y3)
if(yl*y2.GT.O.) then
xl-x2
yl-y2

else
x3-x2

y3-y2

endif
x2 -xnew
epsi-l .d-5 A'

dela=DABS(C(x2-xlast) /x2)
if(dela.LT.epsi) then
x-x2
return

endif
203 continue

ier-2
x-x2
return
end

* SUBROUTINE ABCNEW(xnew,xl,x2,x3,yl,y2,y3)
Implicit Real*8 (a-z)
Call ABC(a,b,c,xl,x2,x3,yl,y2,y3)
bb-b
if(bb.EQ.O.) bb-l.d-30 .

if(DABS(a/bb) .LT.l.e-1O) then
x;iew--c/b

else
ac-b*b-4.*~
anxl- (-b-DSQRT Cac) )/ (2. *a)
anx2-(-b+DSQRT(ac) ) /(2.*a)
xnew-anxl
if (anx2.GE.xl .AND.anx2.LE.x3) xnew-anx2

endif
return

* end

SUBROUTINE ABC (a,b,c, xl,x2,x3,yl,y2,y3)
* Implicit Real*8(a-z)

all--i. /(C(x2-xl) *(xl-x3))
a12--l . /((x2-xl)*(x3-x2))
a13-- . / ((x3-x2) *(xl-x3))
a2l--all* (x3+x2)

* a22--al2* (xl+x3)

a23--al3*(x2+xl) 1
a3l-a1x2*x3
a32-al2*xl*x3
a33-a13*xl x2
a-allyl+al2*y2+al3*y3

I . IL5~* 5 . 5~
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b-a2l1*yl+a22 *y2+a23*y3
.4 c-a3l*yl+a32*y2+a33*y3 S,

return
end

*4

A

Jill
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